Enabling RAW Image Classification Using Existing RGB Classifiers

Rasmus Munksø, Mathias Viborg Andersen, Lau Nørgaard, Andreas Møgelmose, Thomas B. Moeslund

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

1 Citationer (Scopus)

Abstract

Unprocessed RAW data stands out as a highly valuable image format in image editing and computer vision due to it preserving more details, colors, and a wider dynamic range as captured directly from the camera’s sensor compared to non-linearly processed RGB images. Despite its advantages, the computer vision community has largely overlooked RAW files, especially in domains where preserving precise details and accurate colors are crucial. This work addresses this oversight by leveraging transfer learning techniques. By exploiting the vast amount of available RGB data, we enhance the usability of a limited RAW image dataset for image classification. Surprisingly, applying transfer learning from an RGB-trained model to a RAW dataset yields impressive performance, reducing the dataset size barrier in RAW research. These results are promising, demonstrating the potential of cross-domain transfer learning between RAW and RGB data and opening doors for further exploration in this area of research.

OriginalsprogEngelsk
TitelProceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
Antal sider7
Vol/bind2
ForlagSciTePress
Publikationsdato2024
Sider123-129
ISBN (Elektronisk)978-989-758-679-8
DOI
StatusUdgivet - 2024
BegivenhedGRAPP 2024: 19th International Conference of Computer Graphics Theory and Application - Rom, Italien
Varighed: 27 feb. 202429 feb. 2024
Konferencens nummer: 19
https://grapp.scitevents.org/?y=2024

Konference

KonferenceGRAPP 2024
Nummer19
Land/OmrådeItalien
ByRom
Periode27/02/202429/02/2024
Internetadresse

Fingeraftryk

Dyk ned i forskningsemnerne om 'Enabling RAW Image Classification Using Existing RGB Classifiers'. Sammen danner de et unikt fingeraftryk.

Citationsformater