Enhancing Construction Site Safety Using AI: The Development of a Custom YOLOV8 Model for PPE Compliance Detection

Mohamad Iyad Al-khiami, Mohamed M ElHadad

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

5 Downloads (Pure)

Abstract

This study addresses construction safety by deploying computer vision techniques, specifically a YOLOv8 model by Ultralytics, to monitor PPE compliance. Targeting helmets, vests, and safety shoes, it aims to mitigate accident risks. The model was trained with 2934 images and validated with 816, achieved a 95% mAP. Emphasizing AI's potential in safety management and occupational health in the construction industry. This research lays groundwork for future AI-based safety enhancements in construction sector, highlighting the industry's pressing need for innovative approaches to reduce occupational hazards and improve compliance standards.
OriginalsprogEngelsk
TitelProceedings of the 2024 European Conference on Computing in Construction
RedaktørerMarijana Srećković, Mohamad Kassem, Ranjith Soman, Athanasios Chassiakos
Antal sider8
ForlagEuropean Council on Computing in Construction
Publikationsdato2024
Sider577-584
ISBN (Elektronisk)978-9-083451-30-5
DOI
StatusUdgivet - 2024
Begivenhed2024 European Conference on Computing in Construction - Chania, Grækenland
Varighed: 14 jul. 202417 jul. 2024
https://ec-3.org/conference2024/

Konference

Konference2024 European Conference on Computing in Construction
Land/OmrådeGrækenland
ByChania
Periode14/07/202417/07/2024
Internetadresse
NavnEuropean Conference on Computing in Construction
ISSN2684-1150

Fingeraftryk

Dyk ned i forskningsemnerne om 'Enhancing Construction Site Safety Using AI: The Development of a Custom YOLOV8 Model for PPE Compliance Detection'. Sammen danner de et unikt fingeraftryk.

Citationsformater