Abstract

In this paper, we investigate the field of direct visual odometry and specifically the implementation of hybrid approaches between deep learning and classical hand-crafted methods. We introduce a new approach that integrates a deblurring module with a saliency predictor to perform better point sampling which increases trajectory estimation accuracy in blurry frames, often caused by rapid camera movements or long exposure times in dimly lit conditions. Benchmark testing against DSO and SalientDSO on the EuRoC MAV dataset demonstrated consistent improvements, with the proposed system achieving an average Absolute Trajectory Error (ATE) of 0.26m, compared to 0.335m for DSO and 0.303m for SalientDSO.

OriginalsprogEngelsk
TitelICMVA 2024 - 2024 The 7th International Conference on Machine Vision and Applications
Antal sider8
ForlagAssociation for Computing Machinery (ACM)
Publikationsdato12 mar. 2024
Sider154-161
ISBN (Elektronisk)9798400716553
DOI
StatusUdgivet - 12 mar. 2024
Begivenhed7th International Conference on Machine Vision and Applications, ICMVA 2024 - Singapore, Singapore
Varighed: 12 mar. 202414 mar. 2024

Konference

Konference7th International Conference on Machine Vision and Applications, ICMVA 2024
Land/OmrådeSingapore
BySingapore
Periode12/03/202414/03/2024

Bibliografisk note

Publisher Copyright:
© 2024 Owner/Author.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Enhancing Direct Visual Odometry with Deblurring and Saliency Maps'. Sammen danner de et unikt fingeraftryk.

Citationsformater