Establishing reference interval bounds for censored and contaminated data

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

Reference intervals are essential across the medical and environmental fields. A reference interval (for example, the (Formula presented.) central prediction interval) defines the normal range of measurements for a specific physiological parameter in healthy individuals. Inappropriate reference interval bounds may occur because of censored measurements (due to instrument limitations) or contaminated data (by accidentally sampling nonhealthy individuals). To address this, we propose using the regression-on-order-statistics (ROS) method combined with an optimal Box–Cox transformation. The ROS method involves regressing Gaussian scores based on ranks from ordered noncensored Box–Cox transformed measurements. To find the optimal Box–Cox transformation, we maximize the adjusted (Formula presented.) when estimating the mean and standard deviation through regression of empirical Gaussian quantiles on measurements. We demonstrate how to identify contamination and introduce a new command, ros. Real-life data illustrate the effectiveness of the ROS method.

OriginalsprogEngelsk
TidsskriftStata Journal
Vol/bind25
Udgave nummer1
Sider (fra-til)151-168
Antal sider18
ISSN1536-867X
DOI
StatusUdgivet - 24 mar. 2025

Fingeraftryk

Dyk ned i forskningsemnerne om 'Establishing reference interval bounds for censored and contaminated data'. Sammen danner de et unikt fingeraftryk.

Citationsformater