Estimating functions for inhomogeneous spatial point processes with incomplete covariate data

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

21 Citationer (Scopus)

Abstrakt

The R package spatstat provides a very flexible and useful framework for analysing spatial point patterns. A fundamental feature is a procedure for fitting spatial point process models depending on covariates. However, in practice one often faces incomplete observation of the covariates and this leads to parameter estimation error which is difficult to quantify. In this paper, we introduce a Monte Carlo version of the estimating function used in spatstat for fitting inhomogeneous Poisson processes and certain inhomogeneous cluster processes. For this modified estimating function, it is feasible to obtain the asymptotic distribution of the parameter estimators in the case of incomplete covariate information. This allows a study of the loss of efficiency due to the missing covariate data.
Udgivelsesdato: JUN
OriginalsprogEngelsk
TidsskriftBiometrika
Vol/bind95
Udgave nummer2
Sider (fra-til)351-363
Antal sider13
ISSN0006-3444
DOI
StatusUdgivet - 2008

Citationsformater