Estimation of Incident and Reflected Wave Trains in Highly Nonlinear Two-Dimensional Irregular Waves

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

2 Citationer (Scopus)

Resumé

Most existing methods for separation of two-dimensional (long-crested) waves into incident and reflected components are based on linear wave theory. Recently, a new method for separation of incident and reflected nonlinear regular waves was presented including separation of bound and free superharmonics. The present paper extends this method to irregular waves. Irregular waves are much more complicated to separate because bound components are caused by interaction of many different frequencies, thus, some simplifications are needed. The presented nonlinear separation method is based on narrowband approximation. Second-order wave theory is used to demonstrate that errors for more broad-banded spectra are acceptable. Moreover, for highly nonlinear waves, amplitude dispersion occurs and is included by a simplified amplitude dispersion correction factor. Both assumptions are evaluated based on numerical and physical model data. The overall conclusion is that existing reflection separation methods are reliable only for linear and mildly nonlinear nonbreaking irregular waves, whereas the present method seems reliable for the entire interval from linear to highly nonlinear nonbreaking irregular waves. The present method is shown to be an efficient and practical approximation for an unsolved theoretical problem in the analysis of waves in physical models.
OriginalsprogEngelsk
Artikelnummer04018038
TidsskriftJournal of Waterway, Port, Coastal, and Ocean Engineering
Vol/bind145
Udgave nummer1
ISSN0733-950X
DOI
StatusE-pub ahead of print - 2019

Emneord

  • Wave reflection analysis
  • Nonlinear waves
  • Irregular waves
  • Bound waves

Citer dette

@article{59b5ee18eb3c46d2b99728a458108a48,
title = "Estimation of Incident and Reflected Wave Trains in Highly Nonlinear Two-Dimensional Irregular Waves",
abstract = "Most existing methods for separation of two-dimensional (long-crested) waves into incident and reflected components are based on linear wave theory. Recently, a new method for separation of incident and reflected nonlinear regular waves was presented including separation of bound and free superharmonics. The present paper extends this method to irregular waves. Irregular waves are much more complicated to separate because bound components are caused by interaction of many different frequencies, thus, some simplifications are needed. The presented nonlinear separation method is based on narrowband approximation. Second-order wave theory is used to demonstrate that errors for more broad-banded spectra are acceptable. Moreover, for highly nonlinear waves, amplitude dispersion occurs and is included by a simplified amplitude dispersion correction factor. Both assumptions are evaluated based on numerical and physical model data. The overall conclusion is that existing reflection separation methods are reliable only for linear and mildly nonlinear nonbreaking irregular waves, whereas the present method seems reliable for the entire interval from linear to highly nonlinear nonbreaking irregular waves. The present method is shown to be an efficient and practical approximation for an unsolved theoretical problem in the analysis of waves in physical models.",
keywords = "Wave reflection analysis, Nonlinear waves, Irregular waves, Bound waves, Wave reflection analysis, Nonlinear waves, Irregular waves, Bound waves",
author = "Eldrup, {Mads R{\o}ge} and Andersen, {Thomas Lykke}",
year = "2019",
doi = "10.1061/(ASCE)WW.1943-5460.0000497",
language = "English",
volume = "145",
journal = "Journal of Waterway, Port, Coastal, and Ocean Engineering",
issn = "0733-950X",
publisher = "American Society of Civil Engineers",
number = "1",

}

TY - JOUR

T1 - Estimation of Incident and Reflected Wave Trains in Highly Nonlinear Two-Dimensional Irregular Waves

AU - Eldrup, Mads Røge

AU - Andersen, Thomas Lykke

PY - 2019

Y1 - 2019

N2 - Most existing methods for separation of two-dimensional (long-crested) waves into incident and reflected components are based on linear wave theory. Recently, a new method for separation of incident and reflected nonlinear regular waves was presented including separation of bound and free superharmonics. The present paper extends this method to irregular waves. Irregular waves are much more complicated to separate because bound components are caused by interaction of many different frequencies, thus, some simplifications are needed. The presented nonlinear separation method is based on narrowband approximation. Second-order wave theory is used to demonstrate that errors for more broad-banded spectra are acceptable. Moreover, for highly nonlinear waves, amplitude dispersion occurs and is included by a simplified amplitude dispersion correction factor. Both assumptions are evaluated based on numerical and physical model data. The overall conclusion is that existing reflection separation methods are reliable only for linear and mildly nonlinear nonbreaking irregular waves, whereas the present method seems reliable for the entire interval from linear to highly nonlinear nonbreaking irregular waves. The present method is shown to be an efficient and practical approximation for an unsolved theoretical problem in the analysis of waves in physical models.

AB - Most existing methods for separation of two-dimensional (long-crested) waves into incident and reflected components are based on linear wave theory. Recently, a new method for separation of incident and reflected nonlinear regular waves was presented including separation of bound and free superharmonics. The present paper extends this method to irregular waves. Irregular waves are much more complicated to separate because bound components are caused by interaction of many different frequencies, thus, some simplifications are needed. The presented nonlinear separation method is based on narrowband approximation. Second-order wave theory is used to demonstrate that errors for more broad-banded spectra are acceptable. Moreover, for highly nonlinear waves, amplitude dispersion occurs and is included by a simplified amplitude dispersion correction factor. Both assumptions are evaluated based on numerical and physical model data. The overall conclusion is that existing reflection separation methods are reliable only for linear and mildly nonlinear nonbreaking irregular waves, whereas the present method seems reliable for the entire interval from linear to highly nonlinear nonbreaking irregular waves. The present method is shown to be an efficient and practical approximation for an unsolved theoretical problem in the analysis of waves in physical models.

KW - Wave reflection analysis

KW - Nonlinear waves

KW - Irregular waves

KW - Bound waves

KW - Wave reflection analysis

KW - Nonlinear waves

KW - Irregular waves

KW - Bound waves

U2 - 10.1061/(ASCE)WW.1943-5460.0000497

DO - 10.1061/(ASCE)WW.1943-5460.0000497

M3 - Journal article

VL - 145

JO - Journal of Waterway, Port, Coastal, and Ocean Engineering

JF - Journal of Waterway, Port, Coastal, and Ocean Engineering

SN - 0733-950X

IS - 1

M1 - 04018038

ER -