Estimation of Sensor Array Signal Model Parameters Using Factor Analysis

Andreas I. Koutrouvelis, Richard C. Hendriks, Richard Heusdens, Jesper Jensen

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

Abstrakt

Factor analysis is a popular tool in multivariate statistics, applied in several areas of study such as psychology, economics, chemistry and signal processing. Given a set of observed random variables, factor analysis aims at explaining and analyzing the correlation between these random variables. This is done by finding a meaningful structural model representation for the correlation matrix of the observed random variables, and subsequently estimating the underlying model parameters. In this paper, we focus on factor analysis methods applied to a commonly used signal model for sensor arrays applications and use it to jointly estimate the underlying model parameters. In addition we discuss practical considerations of these methods.

OriginalsprogEngelsk
Titel27th European Signal Processing Conference, EUSIPCO 2019
Antal sider5
ForlagIEEE
Publikationsdato18 nov. 2019
Sider1-5
ISBN (Trykt)978-1-5386-7300-3
ISBN (Elektronisk)978-9-0827-9703-9
DOI
StatusUdgivet - 18 nov. 2019
Begivenhed27th European Signal Processing Conference, EUSIPCO 2019 - Coruña, Spanien
Varighed: 2 sep. 20196 sep. 2019

Konference

Konference27th European Signal Processing Conference, EUSIPCO 2019
LandSpanien
ByCoruña
Periode02/09/201906/09/2019
NavnEuropean Signal Processing Conference (EUSIPCO)
ISSN2076-1465

Fingeraftryk Dyk ned i forskningsemnerne om 'Estimation of Sensor Array Signal Model Parameters Using Factor Analysis'. Sammen danner de et unikt fingeraftryk.

  • Citationsformater

    Koutrouvelis, A. I., C. Hendriks, R., Heusdens, R., & Jensen, J. (2019). Estimation of Sensor Array Signal Model Parameters Using Factor Analysis. I 27th European Signal Processing Conference, EUSIPCO 2019 (s. 1-5). IEEE. European Signal Processing Conference (EUSIPCO) https://doi.org/10.23919/EUSIPCO.2019.8902967