Explainable machine learning for breakdown prediction in high gradient rf cavities

Christoph Obermair, Thomas Cartier-Michaud, Andrea Apollonio, William Millar, Lukas Felsberger, Lorenz Fischl, Holger Severin Bovbjerg, Daniel Wollmann, Walter Wuensch, Nuria Catalan-Lasheras, Marçà Boronat, Franz Pernkopf, Graeme Burt

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

14 Citationer (Scopus)
64 Downloads (Pure)

Abstract

The occurrence of vacuum arcs or radio frequency (rf) breakdowns is one of the most prevalent factors limiting the high-gradient performance of normal conducting rf cavities in particle accelerators. In this paper, we search for the existence of previously unrecognized features related to the incidence of rf breakdowns by applying a machine learning strategy to high-gradient cavity data from CERN's test stand for the Compact Linear Collider (CLIC). By interpreting the parameters of the learned models with explainable artificial intelligence (AI), we reverse-engineer physical properties for deriving fast, reliable, and simple rule-based models. Based on 6 months of historical data and dedicated experiments, our models show fractions of data with a high influence on the occurrence of breakdowns. Specifically, it is shown that the field emitted current following an initial breakdown is closely related to the probability of another breakdown occurring shortly thereafter. Results also indicate that the cavity pressure should be monitored with increased temporal resolution in future experiments, to further explore the vacuum activity associated with breakdowns.

OriginalsprogEngelsk
Artikelnummer104601
TidsskriftPhysical Review Accelerators and Beams
Vol/bind25
Udgave nummer10
DOI
StatusUdgivet - okt. 2022

Bibliografisk note

Publisher Copyright:
© 2022 authors. Published by the American Physical Society.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Explainable machine learning for breakdown prediction in high gradient rf cavities'. Sammen danner de et unikt fingeraftryk.

Citationsformater