Exploring loss functions for optimising the accuracy of Siamese Neural Networks in Re-Identification applications

Jonathan Eichild Schmidt, Oscar Edvard Mäkinen, Simon Gørtz Flou Nielsen, Anders Skaarup Johansen, Kamal Nasrollahi, Thomas B. Moeslund

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

Abstract

As Re-Identification (Re-ID) is becoming more and more common in today’s world, the need for more optimizedalgorithms also becomes more wanted. This is due to the importance of high accuracy as the consequences ofan incorrect match can mean security issues, if used to gain access or result in incorrect findings in science dueto wrong data. This paper explores enhancing the performance of Siamese Neural Networks by exploring theperformance of loss functions to better suit the user’s Re-IDing needs. These loss functions are Triplet loss,Triplet Hard loss and Quadruplet loss. Results show that the Triplet hard loss function performs better thanthe two others. The functions were tested on a human dataset as well as on animal datasets
OriginalsprogEngelsk
TitelFourteenth International Conference on Machine Vision, ICMV 2021
RedaktørerWolfgang Osten, Dmitry Nikolaev, Jianhong Zhou
Antal sider7
ForlagSPIE - International Society for Optical Engineering
Publikationsdato5 mar. 2022
Artikelnummer120840W
ISBN (Trykt)9781510650442
ISBN (Elektronisk)9781510650459
DOI
StatusUdgivet - 5 mar. 2022
BegivenhedFourteenth International Conference on Machine Vision (ICMV 2021), 2021 - Rome, Italien
Varighed: 8 nov. 202112 nov. 2021
http://icmv.org/

Konference

KonferenceFourteenth International Conference on Machine Vision (ICMV 2021), 2021
Land/OmrådeItalien
ByRome
Periode08/11/202112/11/2021
Internetadresse
NavnProceedings of SPIE, the International Society for Optical Engineering
Vol/bind12084
ISSN0277-786X

Fingeraftryk

Dyk ned i forskningsemnerne om 'Exploring loss functions for optimising the accuracy of Siamese Neural Networks in Re-Identification applications'. Sammen danner de et unikt fingeraftryk.

Citationsformater