Fast 3D Point-Cloud Segmentation for Interactive Surfaces

Everett Mondliwethu Mthunzi, Christopher Getschmann, Florian Echtler

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

15 Downloads (Pure)


Easily accessible depth sensors have enabled using point-cloud data to augment tabletop surfaces in everyday environments. However, point-cloud operations are computationally expensive and challenging to perform in real-time, particularly when targeting embedded systems without a dedicated GPU. In this paper, we propose mitigating the high computational costs by segmenting candidate interaction regions near real-time. We contribute an open-source solution for variable depth cameras using CPU-based architectures. For validation, we employ Microsoft’s Azure Kinect and report achieved performance. Our initial findings show that our approach takes under to segment candidate interaction regions on a tabletop surface and reduces the data volume by up to 70%. We conclude by contrasting the performance of our solution against a model-fitting approach implemented by the SurfaceStreams toolkit. Our approach outperforms the RANSAC-based strategy within the context of our test scenario, segmenting a tabletop’s interaction region up to 94% faster. Our results show promise for point-cloud-based approaches, even when targeting embedded solutions with limited resources.
TitelISS 2021 - Companion Proceedings of the 2021 Conference on Interactive Surfaces and Spaces
Antal sider5
UdgivelsesstedNew York, NY, USA
ForlagAssociation for Computing Machinery
Publikationsdato14 nov. 2021
ISBN (Elektronisk)978-1-4503-8340-0
StatusUdgivet - 14 nov. 2021
BegivenhedISS '21: Interactive Surfaces and Spaces - Lodz, Polen
Varighed: 14 nov. 202117 nov. 2021


KonferenceISS '21: Interactive Surfaces and Spaces
NavnISS '21


Dyk ned i forskningsemnerne om 'Fast 3D Point-Cloud Segmentation for Interactive Surfaces'. Sammen danner de et unikt fingeraftryk.