Feynman-Kac formulas for Dirichlet-Pauli-Fierz operators with singular coefficients

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstrakt

We derive Feynman-Kac formulas for Dirichlet realizations of Pauli-Fierz operators
generating the dynamics of nonrelativistic quantum mechanical matter particles, which are minimally coupled to both classical and quantized radiation fields and confined to an arbitrary open subset of the Euclidean space. Thanks to a suitable interpretation of the involved Stratonovich integrals, we are able to retain familiar formulas for the Feynman-Kac integrands merely assuming local square-integrability of the classical vector potential and the coupling function in the quantized vector potential. Allowing for fairly general coupling functions becomes relevant when the matter-radiation system is confined to cavities with inward pointing boundary singularities.
OriginalsprogEngelsk
Artikelnummer62
TidsskriftIntegral Equations and Operator Theory
Vol/bind93
Udgave nummer6
Antal sider54
ISSN0378-620X
DOI
StatusUdgivet - dec. 2021

Fingeraftryk

Dyk ned i forskningsemnerne om 'Feynman-Kac formulas for Dirichlet-Pauli-Fierz operators with singular coefficients'. Sammen danner de et unikt fingeraftryk.

Citationsformater