TY - GEN
T1 - From OpenCCG to AI planning: Detecting infeasible edges in sentence generation
AU - Schwenger, Maximilian
AU - Torralba, Alvaro
AU - Hoffmann, Jörg
AU - Howcroft, David M.
AU - Demberg, Vera
PY - 2016
Y1 - 2016
N2 - The search space in grammar-based natural language generation tasks can get very large, which is particularly problematic when generating long utterances or paragraphs. Using surface realization with OpenCCG as an example, we show that we can effectively detect partial solutions (edges) which cannot ultimately be part of a complete sentence because of their syntactic category. Formulating the completion of an edge into a sentence as finding a solution path in a large state-transition system, we demonstrate a connection to AI Planning which is concerned with this kind of problem. We design a compilation from OpenCCG into AI Planning allowing the detection of infeasible edges via AI Planning dead-end detection methods (proving the absence of a solution to the compilation). Our experiments show that this can filter out large fractions of infeasible edges in, and thus benefit the performance of, complex realization processes.
AB - The search space in grammar-based natural language generation tasks can get very large, which is particularly problematic when generating long utterances or paragraphs. Using surface realization with OpenCCG as an example, we show that we can effectively detect partial solutions (edges) which cannot ultimately be part of a complete sentence because of their syntactic category. Formulating the completion of an edge into a sentence as finding a solution path in a large state-transition system, we demonstrate a connection to AI Planning which is concerned with this kind of problem. We design a compilation from OpenCCG into AI Planning allowing the detection of infeasible edges via AI Planning dead-end detection methods (proving the absence of a solution to the compilation). Our experiments show that this can filter out large fractions of infeasible edges in, and thus benefit the performance of, complex realization processes.
KW - Planning and scheduling
UR - http://www.scopus.com/inward/record.url?scp=85031939300&partnerID=8YFLogxK
M3 - Article in proceeding
AN - SCOPUS:85031939300
SN - 9784879747020
T3 - COLING 2016 - 26th International Conference on Computational Linguistics, Proceedings of COLING 2016: Technical Papers
SP - 1524
EP - 1534
BT - COLING 2016 - 26th International Conference on Computational Linguistics, Proceedings of COLING 2016
PB - Association for Computational Linguistics, ACL Anthology
T2 - 26th International Conference on Computational Linguistics, COLING 2016
Y2 - 11 December 2016 through 16 December 2016
ER -