GAP OPENING IN THE SPECTRUM OF SOME DIRAC-LIKE PSEUDO-DIFFERENTIAL OPERATORS

J. M. Barbaroux, H. D. Cornean, S. Zalczer

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

In this paper, we study the opening of a spectral gap for a class of 2-dimensional periodic Hamiltonians which include those modelling multilayer graphene. The kinetic part of the Hamiltonian is given by σ·F (−i∇), where σ denotes the Pauli matrices and F is a sufficiently regular vector-valued function which equals 0 at the origin and grows at infinity. Its spectrum is the whole real line. We prove that a gap appears for perturbations in a certain class of periodic matrix-valued potentials depending on F, and we study how this gap depends on different parameters.

OriginalsprogEngelsk
TidsskriftRevue Roumaine de Mathematiques Pures et Appliquees
Vol/bind66
Udgave nummer3-4
Sider (fra-til)597-616
Antal sider20
ISSN0035-3965
StatusUdgivet - 2021

Bibliografisk note

Publisher Copyright:
© 2021, Publishing House of the Romanian Academy. All rights reserved.

Fingeraftryk

Dyk ned i forskningsemnerne om 'GAP OPENING IN THE SPECTRUM OF SOME DIRAC-LIKE PSEUDO-DIFFERENTIAL OPERATORS'. Sammen danner de et unikt fingeraftryk.

Citationsformater