Generalized Reasoning with Graph Neural Networks by Relational Bayesian Network Encodings

Raffaele Pojer, Andrea Passerini, Manfred Jaeger

Publikation: Konferencebidrag uden forlag/tidsskriftPaper uden forlag/tidsskriftForskningpeer review


Graph neural networks (GNNs) and statistical relational learning are two different approaches to learning with graph data. The former can provide highly accurate models for specific tasks when sufficient training data is available, whereas the latter supports a wider range of reasoning types, and can incorporate manual specifications of interpretable domain knowledge. In this paper we present a method to embed GNNs in a statistical relational learning framework, such that the predictive model represented by the GNN becomes part of a full generative model. This model then supports a wide range of queries, including general conditional probability queries, and computing most probable configurations of unobserved node attributes or edges. In particular, we demonstrate how this latter type of queries can be used to obtain model-level explanations of a GNN in a flexible and interactive manner.
Antal sider12
StatusUdgivet - 2023
BegivenhedThe Second Learning on Graphs Conference - Online
Varighed: 27 nov. 202330 nov. 2023
Konferencens nummer: 2


KonferenceThe Second Learning on Graphs Conference


Dyk ned i forskningsemnerne om 'Generalized Reasoning with Graph Neural Networks by Relational Bayesian Network Encodings'. Sammen danner de et unikt fingeraftryk.