Genetic Algorithm Applied to State-Feedback Control Design of Grid and Circulating Current in Modular Multilevel Converters

Rashad Ghassani, Antoneta Iuliana Bratcu, Remus Teodorescu

Publikation: Bidrag til tidsskriftKonferenceartikel i tidsskriftForskningpeer review

2 Citationer (Scopus)
20 Downloads (Pure)

Abstract

This paper discusses the application of a genetic algorithm (GA) to control system design for Modular Multilevel Converters (MMCs). In particular, genetic algorithm is used to compute the gains of a state-feedback controller for multi-input/multi-output (MIMO) plant model. This GA-optimized state-feedback controller is used to control both grid and circulating current of the MMC. This assures that the two currents' input-coupled dynamics are managed using a MIMO strategy. A detailed MATLAB®/Simulink® model of a three-phase MMC is further used to validate the proposed control technique. Different simulations show that the GA-optimized state-feedback controller outperforms the conventional cascaded control.

OriginalsprogEngelsk
BogserieIFAC-PapersOnLine
Vol/bind55
Udgave nummer9
Sider (fra-til)431-436
Antal sider6
ISSN1474-6670
DOI
StatusUdgivet - 2022
Begivenhed11th IFAC Symposium on Control of Power and Energy Systems, CPES 2022 - Online, Serbien
Varighed: 21 jun. 202223 jun. 2022

Konference

Konference11th IFAC Symposium on Control of Power and Energy Systems, CPES 2022
Land/OmrådeSerbien
ByOnline
Periode21/06/202223/06/2022

Bibliografisk note

Publisher Copyright:
© 2022 Elsevier B.V.. All rights reserved.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Genetic Algorithm Applied to State-Feedback Control Design of Grid and Circulating Current in Modular Multilevel Converters'. Sammen danner de et unikt fingeraftryk.

Citationsformater