Harmonic resonance assessment of multiple paralleled grid-connected inverters system

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

18 Citationer (Scopus)

Abstract

This paper presents an eigenvalue-based impedance stability analytical method of multiple paralleled grid-connected inverter system. Different from the conventional impedance-based stability criterion, this work first built the state-space model of paralleled grid-connected inverters. On the basis of this, a bridge between the state-space-based modelling and impedance-based stability criterion is presented. The proposed method is able to perform stability assessment locally at the connection points of the component. Meanwhile, the eigenvalue-based sensitivity analysis is adopted to identify the root causes of harmonic resonance, which thus combines the advanced merits of the two worlds, and enhances the analytical ability to perform a harmonic resonance assessment. Simulations and experimental results are provided to demonstrate the effectiveness of the proposed method.
OriginalsprogEngelsk
TitelProceedings of the 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia)
Antal sider6
ForlagIEEE Press
Publikationsdatojun. 2017
Sider2070-2075
ISBN (Trykt)978-1-5090-5157-1
DOI
StatusUdgivet - jun. 2017
Begivenhed2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia) - Kaohsiung, Taiwan
Varighed: 3 jun. 20177 jun. 2017

Konference

Konference2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia)
Land/OmrådeTaiwan
ByKaohsiung
Periode03/06/201707/06/2017

Fingeraftryk

Dyk ned i forskningsemnerne om 'Harmonic resonance assessment of multiple paralleled grid-connected inverters system'. Sammen danner de et unikt fingeraftryk.

Citationsformater