Heartbeat Signal from Facial Video for Biometric Recognition

Mohammad Ahsanul Haque, Kamal Nasrollahi, Thomas B. Moeslund

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

12 Citationer (Scopus)
1631 Downloads (Pure)

Abstrakt

Different biometric traits such as face appearance and heartbeat signal from Electrocardiogram (ECG)/Phonocardiogram (PCG) are widely used in the human identity recognition. Recent advances in facial video based measurement of cardio-physiological parameters such as heartbeat rate, respiratory rate, and blood volume pressure provide the possibility of extracting heartbeat signal from facial video instead of using obtrusive ECG or PCG sensors in the body. This paper proposes the Heartbeat Signal from Facial Video (HSFV) as a new biometric trait for human identity recognition, for the first time to the best of our knowledge. Feature extraction from the HSFV is accomplished by employing Radon transform on a waterfall model of the replicated HSFV. The pairwise Minkowski distances are obtained from the Radon image as the features. The authentication is accomplished by a decision tree based supervised approach. The potential of the proposed HSFV biometric for human identification is demonstrated on a public database.
OriginalsprogEngelsk
TitelImage Analysis : 19th Scandinavian Conference, SCIA 2015, Copenhagen, Denmark, June 15-17, 2015. Proceedings
Antal sider12
ForlagSpringer
Publikationsdato2015
Sider165-174
ISBN (Trykt)978-3-319-19664-0
ISBN (Elektronisk)978-3-319-19665-7
DOI
StatusUdgivet - 2015
BegivenhedScandinavian Conference on Image Analysis - Copenhagen, Danmark
Varighed: 15 jun. 201517 jun. 2015
Konferencens nummer: 19

Konference

KonferenceScandinavian Conference on Image Analysis
Nummer19
LandDanmark
ByCopenhagen
Periode15/06/201517/06/2015
NavnLecture Notes in Computer Science
Vol/bind9127
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Heartbeat Signal from Facial Video for Biometric Recognition'. Sammen danner de et unikt fingeraftryk.

Citationsformater