Hypergeometric expression for the resolvent of the discrete Laplacian in low dimensions

Kenichi Ito, Arne Jensen

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

3 Citationer (Scopus)

Abstract

We present an explicit formula for the resolvent of the discrete Laplacian on the square lattice, and compute its asymptotic expansions around thresholds in low dimensions. As a by-product we obtain a closed formula for the fundamental solution to the discrete Laplacian. For the proofs we express the resolvent in a general dimension in terms of the Appell–Lauricella hypergeometric function of type C outside a disk encircling the spectrum. In low dimensions it reduces to a generalized hypergeometric function, for which certain transformation formulas are available for the desired expansions.

OriginalsprogEngelsk
Artikelnummer32
TidsskriftIntegral Equations and Operator Theory
Vol/bind93
Udgave nummer3
ISSN0378-620X
DOI
StatusUdgivet - 2021

Fingeraftryk

Dyk ned i forskningsemnerne om 'Hypergeometric expression for the resolvent of the discrete Laplacian in low dimensions'. Sammen danner de et unikt fingeraftryk.

Citationsformater