Improving a Deep Learning based RGB-D Object Recognition Model by Ensemble Learning

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

11 Citationer (Scopus)
691 Downloads (Pure)

Abstract

Augmenting RGB images with depth information is a well-known method to significantly improve the recognition accuracy of object recognition models. Another method to im- prove the performance of visual recognition models is ensemble learning. However, this method has not been widely explored in combination with deep convolutional neural network based RGB-D object recognition models. Hence, in this paper, we form different ensembles of complementary deep convolutional neural network models, and show that this can be used to increase the recognition performance beyond existing limits. Experiments on the Washington RGB-D Object Dataset show that our best performing ensemble improves the recognition performance with 0.7% compared to using the baseline model alone.
OriginalsprogEngelsk
Titel2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)
Antal sider6
ForlagIEEE
Publikationsdato8 mar. 2018
Sider1-6
Artikelnummer8310101
ISBN (Trykt)978-1-5386-1843-1
ISBN (Elektronisk)978-1-5386-1842-4
DOI
StatusUdgivet - 8 mar. 2018
BegivenhedInternational Conference on Image Processing Theory, Tools and Applications - Montreal, Canada
Varighed: 28 nov. 20171 dec. 2017

Konference

KonferenceInternational Conference on Image Processing Theory, Tools and Applications
Land/OmrådeCanada
ByMontreal
Periode28/11/201701/12/2017
NavnInternational Conference on Image Processing Theory, Tools and Applications (IPTA)
ISSN2154-512X

Fingeraftryk

Dyk ned i forskningsemnerne om 'Improving a Deep Learning based RGB-D Object Recognition Model by Ensemble Learning'. Sammen danner de et unikt fingeraftryk.

Citationsformater