Improving Accuracy of Time Series Forecasting by Applying an ARIMA-ANN Hybrid Model

Hadid Wahedi, Kacper Wrona, Mads Heltoft, Sarkaft Saleh*, Thomas Roum Knudsen, Ulrik Bendixen, Izabela Nielsen, Subrata Saha, Gregers Sandager Borup

*Kontaktforfatter

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

Abstrakt

Accurate demand forecasting is critical for any small and medium-sized manufacturer. Limited structured data sources commonly prevent small and medium-sized manufacturers from improving forecasting accuracy, affecting overall performance. We classified products, then implemented a hybrid forecasting method and compared the outcome with Exponential smoothing, ARIMA, LSTM, and ANN forecasting techniques. Numerical results demonstrate that a selection of forecasting methods is not independent of product categorization. For slow-moving products, careful consideration is required. The hybrid ARIMA-ANN method can outperform some existing techniques and lead to higher prediction accuracy, by capturing both linear and nonlinear variations.

OriginalsprogEngelsk
TitelAdvances in Production Management Systems. Smart Manufacturing and Logistics Systems : Turning Ideas into Action - IFIP WG 5.7 International Conference, APMS 2022, Proceedings
RedaktørerDuck Young Kim, Gregor von Cieminski, David Romero
Antal sider8
ForlagSpringer
Publikationsdato2022
Sider3-10
ISBN (Trykt)9783031164064
DOI
StatusUdgivet - 2022
BegivenhedIFIP WG 5.7 International Conference on Advances in Production Management Systems, APMS 2022 - Gyeongju, Sydkorea
Varighed: 25 sep. 202229 sep. 2022

Konference

KonferenceIFIP WG 5.7 International Conference on Advances in Production Management Systems, APMS 2022
Land/OmrådeSydkorea
ByGyeongju
Periode25/09/202229/09/2022
NavnI F I P Advances in Information and Communication Technology
Vol/bind663 IFIP
ISSN1868-4238

Bibliografisk note

Publisher Copyright:
© 2022, IFIP International Federation for Information Processing.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Improving Accuracy of Time Series Forecasting by Applying an ARIMA-ANN Hybrid Model'. Sammen danner de et unikt fingeraftryk.

Citationsformater