Improving Tensor Based Recommenders with Clustering

Martin Leginus, Peter Dolog, Valdas Zemaitis

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

14 Citationer (Scopus)

Abstract

Social tagging systems (STS) model three types of entities
(i.e. tag-user-item) and relationships between them are encoded into a
3-order tensor. Latent relationships and patterns can be discovered by
applying tensor factorization techniques like Higher Order Singular Value
Decomposition (HOSVD), Canonical Decomposition etc. STS accumulate large amount of sparse data that restricts factorization techniques
to detect latent relations and also significantly slows down the process
of a factorization. We propose to reduce tag space by exploiting clustering techniques so that the quality of the recommendations and execution time are improved and memory requirements are decreased. The
clustering is motivated by the fact that many tags in a tag space are
semantically similar thus the tags can be grouped. Finally, promising
experimental results are presented
OriginalsprogEngelsk
TitelUser Modeling, Adaptation, and Personalization : 20th International Conference, UMAP 2012, Montreal, Canada, July 16-20, 2012. Proceedings
Antal sider10
Vol/bind7379
UdgivelsesstedBerlin
ForlagSpringer
Publikationsdato2012
Sider151-163
ISBN (Trykt)978-3-642-31453-7
ISBN (Elektronisk)978-3-642-31454-4
DOI
StatusUdgivet - 2012
BegivenhedUser Modeling, Adaptation, and Personalization - Montreal, Canada
Varighed: 16 jul. 201220 jul. 2012
Konferencens nummer: 20

Konference

KonferenceUser Modeling, Adaptation, and Personalization
Nummer20
Land/OmrådeCanada
ByMontreal
Periode16/07/201220/07/2012
NavnLecture Notes in Computer Science
Vol/bind7379
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Improving Tensor Based Recommenders with Clustering'. Sammen danner de et unikt fingeraftryk.

Citationsformater