TY - JOUR
T1 - In vivo calibration of the T2* cardiovascular magnetic resonance method at 1.5 T for estimation of cardiac iron in a minipig model of transfusional iron overload
AU - Jensen, Peter-Diedrich Matthias
AU - Nielsen, Asbjørn Haaning
AU - Simonsen, Carsten Wiberg
AU - Baandrup, Ulrik Thorngren
AU - Jensen, Svend Eggert
AU - Bøgsted, Martin
AU - Magnusdottir, Sigriður Olga
AU - Jensen, Anne Birthe Helweg
AU - Kjærgaard, Benedict
PY - 2021/3/11
Y1 - 2021/3/11
N2 - BACKGROUND: Non-invasive estimation of the cardiac iron concentration (CIC) by T2* cardiovascular magnetic resonance (CMR) has been validated repeatedly and is in widespread clinical use. However, calibration data are limited, and mostly from post-mortem studies. In the present study, we performed an in vivo calibration in a dextran-iron loaded minipig model.METHODS: R2* (= 1/T2*) was assessed in vivo by 1.5 T CMR in the cardiac septum. Chemical CIC was assessed by inductively coupled plasma-optical emission spectroscopy in endomyocardial catheter biopsies (EMBs) from cardiac septum taken during follow up of 11 minipigs on dextran-iron loading, and also in full-wall biopsies from cardiac septum, taken post-mortem in another 16 minipigs, after completed iron loading.RESULTS: A strong correlation could be demonstrated between chemical CIC in 55 EMBs and parallel cardiac T2* (Spearman rank correlation coefficient 0.72, P < 0.001). Regression analysis led to [CIC] = (R2* - 17.16)/41.12 for the calibration equation with CIC in mg/g dry weight and R2* in Hz. An even stronger correlation was found, when chemical CIC was measured by full-wall biopsies from cardiac septum, taken immediately after euthanasia, in connection with the last CMR session after finished iron loading (Spearman rank correlation coefficient 0.95 (P < 0.001). Regression analysis led to the calibration equation [CIC] = (R2* - 17.2)/31.8.CONCLUSIONS: Calibration of cardiac T2* by EMBs is possible in the minipig model but is less accurate than by full-wall biopsies. Likely explanations are sampling error, variable content of non-iron containing tissue and smaller biopsies, when using catheter biopsies. The results further validate the CMR T2* technique for estimation of cardiac iron in conditions with iron overload and add to the limited calibration data published earlier.
AB - BACKGROUND: Non-invasive estimation of the cardiac iron concentration (CIC) by T2* cardiovascular magnetic resonance (CMR) has been validated repeatedly and is in widespread clinical use. However, calibration data are limited, and mostly from post-mortem studies. In the present study, we performed an in vivo calibration in a dextran-iron loaded minipig model.METHODS: R2* (= 1/T2*) was assessed in vivo by 1.5 T CMR in the cardiac septum. Chemical CIC was assessed by inductively coupled plasma-optical emission spectroscopy in endomyocardial catheter biopsies (EMBs) from cardiac septum taken during follow up of 11 minipigs on dextran-iron loading, and also in full-wall biopsies from cardiac septum, taken post-mortem in another 16 minipigs, after completed iron loading.RESULTS: A strong correlation could be demonstrated between chemical CIC in 55 EMBs and parallel cardiac T2* (Spearman rank correlation coefficient 0.72, P < 0.001). Regression analysis led to [CIC] = (R2* - 17.16)/41.12 for the calibration equation with CIC in mg/g dry weight and R2* in Hz. An even stronger correlation was found, when chemical CIC was measured by full-wall biopsies from cardiac septum, taken immediately after euthanasia, in connection with the last CMR session after finished iron loading (Spearman rank correlation coefficient 0.95 (P < 0.001). Regression analysis led to the calibration equation [CIC] = (R2* - 17.2)/31.8.CONCLUSIONS: Calibration of cardiac T2* by EMBs is possible in the minipig model but is less accurate than by full-wall biopsies. Likely explanations are sampling error, variable content of non-iron containing tissue and smaller biopsies, when using catheter biopsies. The results further validate the CMR T2* technique for estimation of cardiac iron in conditions with iron overload and add to the limited calibration data published earlier.
KW - Cardiac iron
KW - Cardiosiderosis
KW - Dextran-iron loading
KW - Minipig model
KW - T2 calibration
KW - T2 cardiovascular magnetic resonance
UR - http://www.scopus.com/inward/record.url?scp=85102240387&partnerID=8YFLogxK
U2 - 10.1186/s12968-021-00715-6
DO - 10.1186/s12968-021-00715-6
M3 - Journal article
C2 - 33691716
SN - 1097-6647
VL - 23
JO - Journal of Cardiovascular Magnetic Resonance
JF - Journal of Cardiovascular Magnetic Resonance
IS - 1
M1 - 27
ER -