TY - PAT

T1 - Iterative normalization technique for reference sequence generation for zero-tail discrete fourier transform spread orthogonal frequency division multiplexing

AU - Berardinelli, Gilberto

AU - Frederiksen, Frank

AU - Pedersen, Klaus I.

AU - Mogensen, Preben Elgaard

AU - Pajukoski, Kari

PY - 2017

Y1 - 2017

N2 - Systems, methods, apparatuses, and computer program products for generating sequences for zero-tail discrete fourier transform (DFT)-spread-orthogonal frequency division multiplexing (OFDM) (ZT DFT-s-OFDM) reference signals. One method includes adding a zero vector to an input sequence, and performing an iterative manipulation of the input sequence. The performing of the iterative manipulation of the input sequence may include, for example: computing frequency domain response of the sequence, normalizing elements of the computed frequency domain sequence to unitary power while maintaining phase of each of the elements, converting the sequence to time domain, generating a zero-padded sequence by forcing a zero head and tail of the sequence, and repeating the steps until a final sequence with zero-tail and flat frequency response is obtained.

AB - Systems, methods, apparatuses, and computer program products for generating sequences for zero-tail discrete fourier transform (DFT)-spread-orthogonal frequency division multiplexing (OFDM) (ZT DFT-s-OFDM) reference signals. One method includes adding a zero vector to an input sequence, and performing an iterative manipulation of the input sequence. The performing of the iterative manipulation of the input sequence may include, for example: computing frequency domain response of the sequence, normalizing elements of the computed frequency domain sequence to unitary power while maintaining phase of each of the elements, converting the sequence to time domain, generating a zero-padded sequence by forcing a zero head and tail of the sequence, and repeating the steps until a final sequence with zero-tail and flat frequency response is obtained.

M3 - Patent

M1 - US9544173B1

ER -