iTopN: Incremental Extraction of the N Most Visible Objects

Linas Bukauskas, Leo Mark, Edward Omiecinski, Michael Hanspeter Bøhlen

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskning

4 Citationer (Scopus)

Abstract

The visual exploration of large databases calls for a tight coupling of database and visualization systems. Current visualization systems typically fetch all the data and organize it in a scene tree, which is then used to render the visible data. For immersive data explorations, where an observer navigates in a potentially huge data space and explores selected data regions this approach is inadequate. A scalable approach is to make the database system observer-aware and exchange the data that is visible and most relevant to the observer.In this paper we present iTopN an incremental algorithm for extracting the most visible objects relative to the current position of the observer. We implement iTopN and compare it to an improved version of the R-tree that extends LRU with the caching of the top levels of the R-tree (LW-LRU). Our experiments show that iTopN is orders of magnitude faster than LW-LRU given the same amount of memory. Our experiments also show that for LW-LRU to perform as fast as iTopN it needs three times as much memory.
OriginalsprogEngelsk
TitelProceedings of the twelfth international conference on Information and knowledge management
ForlagAssociation for Computing Machinery (ACM)
Publikationsdato2003
Sider461-468
ISBN (Trykt)1581137230
StatusUdgivet - 2003
BegivenhediTopN: Incremental Extraction of the N Most Visible Objects -
Varighed: 19 maj 2010 → …

Konference

KonferenceiTopN: Incremental Extraction of the N Most Visible Objects
Periode19/05/2010 → …

Bibliografisk note

ISSN ; -

Fingeraftryk

Dyk ned i forskningsemnerne om 'iTopN: Incremental Extraction of the N Most Visible Objects'. Sammen danner de et unikt fingeraftryk.

Citationsformater