Learning Type Extension Trees for Metal Bonding State Prediction

Paolo Frasconi, Manfred Jaeger, Andrea Passerini

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskning

Abstrakt

Type Extension Trees (TET) have been recently introduced as an expressive

representation language allowing to encode complex combinatorial features

of relational entities. They can be efficiently learned with a greedy search

strategy driven by a generalized relational information gain and a discriminant

function. In predicting the metal bonding state of proteins, TET achieve significant

improvements over manually curated motifs, and the expressiveness of combinatorial

features significantly contributes to such performance. Preliminary collective

classification results seem to indicate it as a promising direction for further

research.

OriginalsprogEngelsk
TitelStReBio Workshop online proceedings
Antal sider4
Publikationsdato2008
StatusUdgivet - 2008
BegivenhedWorkshop on Statistical and Relational Learning in Bioinformatics - Antwerp, Belgien
Varighed: 19 sep. 200819 sep. 2008

Konference

KonferenceWorkshop on Statistical and Relational Learning in Bioinformatics
LandBelgien
ByAntwerp
Periode19/09/200819/09/2008

Fingeraftryk Dyk ned i forskningsemnerne om 'Learning Type Extension Trees for Metal Bonding State Prediction'. Sammen danner de et unikt fingeraftryk.

Citationsformater