Lightweight Quaternion Transition Generation with Neural Networks.

Romi Geleijn, Adrian Radziszewski, Julia Beryl van Straaten, Henrique Galvan Debarba

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

3 Citationer (Scopus)

Abstract

This paper introduces the Quaternion Transition Generator (QTG), a new network architecture tailored to animation transition generation for virtual characters. The QTG is simpler than the current state of the art, making it lightweight and easier to implement. It uses approximately 80% fewer arithmetic operations compared to other transition networks. Additionally, this architecture is capable of generating visually accurate rotation-based animations transitions and results in a lower Mean Absolute Error than transition generation techniques that are commonly used for animation blending.
OriginalsprogUdefineret/Ukendt
Titel2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)
Antal sider2
ForlagIEEE (Institute of Electrical and Electronics Engineers)
Publikationsdato2021
Sider579-580
Artikelnummer9419271
ISBN (Trykt)978-1-6654-1166-0
ISBN (Elektronisk)978-1-6654-4057-8
DOI
StatusUdgivet - 2021
Udgivet eksterntJa
Begivenhed2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, VRW 2021 - Virtual, Lisbon, Portugal
Varighed: 27 mar. 20213 apr. 2021

Konference

Konference2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, VRW 2021
Land/OmrådePortugal
ByVirtual, Lisbon
Periode27/03/202103/04/2021

Citationsformater