Local spectral deformation

Matthias Engelmann, Jacob Schach Møller, Morten Grud Rasmussen

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

107 Downloads (Pure)

Abstrakt

We develop an analytic perturbation theory for eigenvalues with finite multiplicities, embedded into the essential spectrum of a self-adjoint operator H. We assume the existence of another self-adjoint operator A for which the family H θ = eiθAHe -iθA extends analytically from the real line to a strip in the complex plane. Assuming a Mourre estimate holds for i[H, A] in the vicinity of the eigenvalue, we prove that the essential spectrum is locally deformed away from the eigenvalue, leaving it isolated and thus permitting an application of Kato's analytic perturbation theory.

OriginalsprogEngelsk
TidsskriftAnnales de l'Institut Fourier
Vol/bind68
Udgave nummer2
Sider (fra-til)767-804
Antal sider38
ISSN0373-0956
StatusUdgivet - 2018

Fingeraftryk Dyk ned i forskningsemnerne om 'Local spectral deformation'. Sammen danner de et unikt fingeraftryk.

Citationsformater