Manycore processing of repeated range queries over massive moving objects observations

Francesco Lettich, Salvatore Orlando, Claudio Silvestri, Christian Søndergaard Jensen

Publikation: Bog/antologi/afhandling/rapportRapportForskning

Resumé

The ability to timely process significant amounts of continuously updated spatial data is mandatory for an increasing number of applications. Parallelism enables such applications to face this data-intensive challenge and allows the devised systems to feature low latency and high scalability. In this paper we focus on a specific data-intensive problem, concerning the repeated processing of huge amounts of range queries over massive sets of moving objects, where the spatial extents of queries and objects are continuously modified over time. To tackle this problem and significantly accelerate query processing we devise a hybrid CPU/GPU pipeline that compresses data output and save query processing work. The devised system relies on an ad-hoc spatial index leading to a problem decomposition that results in a set of independent data-parallel tasks. The index is based on a point-region quadtree space decomposition and allows to tackle effectively a broad range of spatial object distributions, even those very skewed. Also, to deal with the architectural peculiarities and limitations of the GPUs, we adopt non-trivial GPU data structures that avoid the need of locked memory accesses and favour coalesced memory accesses, thus enhancing the overall memory throughput. To the best of our knowledge this is the first work that exploits GPUs to efficiently solve repeated range queries over massive sets of continuously moving objects, characterized by highly skewed spatial distributions. In comparison with state-of-the-art CPU-based implementations, our method highlights significant speedups in the order of 14x-20x, depending on the datasets, even when considering very cheap GPUs.
OriginalsprogEngelsk
Antal sider36
StatusUdgivet - 2014

Bibliografisk note

arXiv.org > cs > arXiv:1411.3212

Citer dette

@book{36284674e028400a812f09d584a0b05c,
title = "Manycore processing of repeated range queries over massive moving objects observations",
abstract = "The ability to timely process significant amounts of continuously updated spatial data is mandatory for an increasing number of applications. Parallelism enables such applications to face this data-intensive challenge and allows the devised systems to feature low latency and high scalability. In this paper we focus on a specific data-intensive problem, concerning the repeated processing of huge amounts of range queries over massive sets of moving objects, where the spatial extents of queries and objects are continuously modified over time. To tackle this problem and significantly accelerate query processing we devise a hybrid CPU/GPU pipeline that compresses data output and save query processing work. The devised system relies on an ad-hoc spatial index leading to a problem decomposition that results in a set of independent data-parallel tasks. The index is based on a point-region quadtree space decomposition and allows to tackle effectively a broad range of spatial object distributions, even those very skewed. Also, to deal with the architectural peculiarities and limitations of the GPUs, we adopt non-trivial GPU data structures that avoid the need of locked memory accesses and favour coalesced memory accesses, thus enhancing the overall memory throughput. To the best of our knowledge this is the first work that exploits GPUs to efficiently solve repeated range queries over massive sets of continuously moving objects, characterized by highly skewed spatial distributions. In comparison with state-of-the-art CPU-based implementations, our method highlights significant speedups in the order of 14x-20x, depending on the datasets, even when considering very cheap GPUs.",
author = "Francesco Lettich and Salvatore Orlando and Claudio Silvestri and Jensen, {Christian S{\o}ndergaard}",
note = "arXiv.org > cs > arXiv:1411.3212",
year = "2014",
language = "English",

}

Manycore processing of repeated range queries over massive moving objects observations. / Lettich, Francesco; Orlando, Salvatore; Silvestri, Claudio; Jensen, Christian Søndergaard.

2014. 36 s.

Publikation: Bog/antologi/afhandling/rapportRapportForskning

TY - RPRT

T1 - Manycore processing of repeated range queries over massive moving objects observations

AU - Lettich, Francesco

AU - Orlando, Salvatore

AU - Silvestri, Claudio

AU - Jensen, Christian Søndergaard

N1 - arXiv.org > cs > arXiv:1411.3212

PY - 2014

Y1 - 2014

N2 - The ability to timely process significant amounts of continuously updated spatial data is mandatory for an increasing number of applications. Parallelism enables such applications to face this data-intensive challenge and allows the devised systems to feature low latency and high scalability. In this paper we focus on a specific data-intensive problem, concerning the repeated processing of huge amounts of range queries over massive sets of moving objects, where the spatial extents of queries and objects are continuously modified over time. To tackle this problem and significantly accelerate query processing we devise a hybrid CPU/GPU pipeline that compresses data output and save query processing work. The devised system relies on an ad-hoc spatial index leading to a problem decomposition that results in a set of independent data-parallel tasks. The index is based on a point-region quadtree space decomposition and allows to tackle effectively a broad range of spatial object distributions, even those very skewed. Also, to deal with the architectural peculiarities and limitations of the GPUs, we adopt non-trivial GPU data structures that avoid the need of locked memory accesses and favour coalesced memory accesses, thus enhancing the overall memory throughput. To the best of our knowledge this is the first work that exploits GPUs to efficiently solve repeated range queries over massive sets of continuously moving objects, characterized by highly skewed spatial distributions. In comparison with state-of-the-art CPU-based implementations, our method highlights significant speedups in the order of 14x-20x, depending on the datasets, even when considering very cheap GPUs.

AB - The ability to timely process significant amounts of continuously updated spatial data is mandatory for an increasing number of applications. Parallelism enables such applications to face this data-intensive challenge and allows the devised systems to feature low latency and high scalability. In this paper we focus on a specific data-intensive problem, concerning the repeated processing of huge amounts of range queries over massive sets of moving objects, where the spatial extents of queries and objects are continuously modified over time. To tackle this problem and significantly accelerate query processing we devise a hybrid CPU/GPU pipeline that compresses data output and save query processing work. The devised system relies on an ad-hoc spatial index leading to a problem decomposition that results in a set of independent data-parallel tasks. The index is based on a point-region quadtree space decomposition and allows to tackle effectively a broad range of spatial object distributions, even those very skewed. Also, to deal with the architectural peculiarities and limitations of the GPUs, we adopt non-trivial GPU data structures that avoid the need of locked memory accesses and favour coalesced memory accesses, thus enhancing the overall memory throughput. To the best of our knowledge this is the first work that exploits GPUs to efficiently solve repeated range queries over massive sets of continuously moving objects, characterized by highly skewed spatial distributions. In comparison with state-of-the-art CPU-based implementations, our method highlights significant speedups in the order of 14x-20x, depending on the datasets, even when considering very cheap GPUs.

M3 - Report

BT - Manycore processing of repeated range queries over massive moving objects observations

ER -