Matrix Representation of Magnetic Pseudo-Differential Operators via Tight Gabor Frames

Horia D. Cornean*, Bernard Helffer, Radu Purice

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

2 Citationer (Scopus)

Abstract

In this paper we use some ideas from [12, 13] and consider the description of Hörmander type pseudo-differential operators on Rd (d≥1), including the case of the magnetic pseudo-differential operators introduced in [15, 16], with respect to a tight Gabor frame. We show that all these operators can be identified with some infinitely dimensional matrices whose elements are strongly localized near the diagonal. Using this matrix representation, one can give short and elegant proofs to classical results like the Calderón-Vaillancourt theorem and Beals’ commutator criterion, and also establish local trace-class criteria.

OriginalsprogEngelsk
Artikelnummer21
TidsskriftJournal of Fourier Analysis and Applications
Vol/bind30
Udgave nummer2
ISSN1069-5869
DOI
StatusUdgivet - apr. 2024

Bibliografisk note

Publisher Copyright:
© The Author(s) 2024.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Matrix Representation of Magnetic Pseudo-Differential Operators via Tight Gabor Frames'. Sammen danner de et unikt fingeraftryk.

Citationsformater