Measurement-Based Control for Minimizing Energy Functions in Quantum Systems

Publikation: Bidrag til tidsskriftKonferenceartikel i tidsskriftForskningpeer review

2 Citationer (Scopus)
17 Downloads (Pure)

Abstract

In variational quantum algorithms (VQAs), the most common objective is to find the minimum energy eigenstate of a given energy Hamiltonian. In this paper, we consider the general problem of finding a sufficient control Hamiltonian structure that, under a given feedback control law, ensures convergence to the minimum energy eigenstate of a given energy function. By including quantum non-demolition (QND) measurements in the loop, convergence to a pure state can be ensured from an arbitrary mixed initial state. Based on existing results on strict control Lyapunov functions, we formulate a semidefinite optimization problem, whose solution defines a non-unique control Hamiltonian, which is sufficient to ensure almost sure convergence to the minimum energy eigenstate under the given feedback law and the action of QND measurements. A numerical example is provided to showcase the proposed methodology.
OriginalsprogEngelsk
BogserieIFAC-PapersOnLine
Vol/bind56
Udgave nummer2
Sider (fra-til)5171-5178
Antal sider8
ISSN1474-6670
DOI
StatusUdgivet - 2023
Begivenhed22nd IFAC World Congress 2023 - Yokohama, Japan
Varighed: 9 jul. 202314 jul. 2023
https://www.ifac2023.org/

Konference

Konference22nd IFAC World Congress 2023
Land/OmrådeJapan
ByYokohama
Periode09/07/202314/07/2023
Internetadresse

Fingeraftryk

Dyk ned i forskningsemnerne om 'Measurement-Based Control for Minimizing Energy Functions in Quantum Systems'. Sammen danner de et unikt fingeraftryk.

Citationsformater