Minimum weight codewords in dual algebraic-geometric codes from the Giulietti-Korchmáros curve

Daniele Bartoli, Matteo Bonini*

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

6 Citationer (Scopus)
14 Downloads (Pure)

Abstract

In this paper we investigate the number of minimum weight codewords of some dual algebraic-geometric codes associated with the Giulietti–Korchmáros maximal curve, by computing the maximal number of intersections between the Giulietti–Korchmáros curve and lines, plane conics, and plane cubics.

OriginalsprogEngelsk
TidsskriftDesigns, Codes, and Cryptography
Vol/bind87
Udgave nummer6
Sider (fra-til)1433-1445
Antal sider13
ISSN0925-1022
DOI
StatusUdgivet - 15 jun. 2019
Udgivet eksterntJa

Bibliografisk note

Publisher Copyright:
© 2018, Springer Science+Business Media, LLC, part of Springer Nature.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Minimum weight codewords in dual algebraic-geometric codes from the Giulietti-Korchmáros curve'. Sammen danner de et unikt fingeraftryk.

Citationsformater