Modeling of HVDC in Dynamic State Estimation Using Unscented Kalman Filter Method

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

6 Citationer (Scopus)


HVDC transmission is an integral part of various power system networks. This article presents an Unscented Kalman Filter dynamic state estimator algorithm that considers the presence of HVDC links. The AC - DC power flow analysis, which is implemented as power flow solver for Dynamic State Estimation (DSE), creates an updated admittance matrix. First, a hybrid AC/DC network model is developed to combine the AC network and DC links. Then a non-linear state estimator can solve for hybrid AC/DC states by applying the unscented Kalman filter (UKF) algorithm. It is demonstrated that UKF is easy to implement and accurate in estimation. The dynamic state variables of multi-machine power systems, which are generator rotor speed and rotor angle, are estimated to study transient behavior of the power system network. Finally, a dynamic state estimation model is built for a 14 bus power system network to evaluate the proposed algorithm for hybrid AC/DC networks.
TitelProceedings of 2016 IEEE International Energy Conference (ENERGYCON)
Antal sider6
Udgivelses stedLeuven
ForlagIEEE Press
Publikationsdatoapr. 2016
ISBN (Elektronisk)978-1-4673-8463-6
StatusUdgivet - apr. 2016
BegivenhedIEEE International Energy Conference (ENERGYCON) 2016 - KU Leuven, Leuven, Belgien
Varighed: 4 apr. 20168 apr. 2016


KonferenceIEEE International Energy Conference (ENERGYCON) 2016
LokationKU Leuven

Fingeraftryk Dyk ned i forskningsemnerne om 'Modeling of HVDC in Dynamic State Estimation Using Unscented Kalman Filter Method'. Sammen danner de et unikt fingeraftryk.

  • Citationsformater