Muckenhoupt Matrix Weights

Morten Nielsen*, Hrvoje Šikić

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

7 Downloads (Pure)

Abstrakt

We study matrix weights defined on the multivariate torus Td. Sufficient conditions for a matrix weight to be in the Muckenhoupt A2-class are studied, and two such sufficiency results obtained by S. Bloom for d= 1 are generalized to the multivariate setting. As an application, an A2-decomposition property is introduced for matrix weights and a BMO distance theorem for matrix weights is considered.
OriginalsprogEngelsk
TidsskriftJournal of Geometric Analysis
Vol/bind31
Sider (fra-til)8850-8865
ISSN1050-6926
DOI
StatusUdgivet - 2021

Bibliografisk note

Publisher Copyright:
© 2020, Mathematica Josephina, Inc.

Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Muckenhoupt Matrix Weights'. Sammen danner de et unikt fingeraftryk.

Citationsformater