Multi-objective control of a self-locking compact electro-hydraulic cylinder drive

Nikolaj Grønkær*, Lasse Nørby Nielsen, Frederik Ødum Nielsen, Søren Ketelsen, Lasse Schmidt


Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review


The field of self-contained linear hydraulic drives based on variable-speed electrical motors and fixed displacement pumps is gaining interest from both industry and academia. Some of the main reasons for this is the possibility to improve the energy efficiency of such drives compared to conventional valve controlled drives, and the possibility for electrical regeneration allowing power sharing between multiple drives. The main drawback for such types of drive concepts is a low pressure in the non-load carrying cylinder chamber. This induces a low drive stiffness limiting the achievable drive bandwidth and hence the application range. However, a so-called self-locking compact drive architecture recently proposed allow to maintain a proper drive stiffness by virtue of separate forward and return flow paths, combining the advantages of efficient flow control into the cylinder and a throttle driven flow out of the cylinder. The multiple inputs available in this architecture allows the control to target several objectives concurrently. The purpose of the study presented is to analyse the dynamic couplings between the control objectives via relative gain array (RGA) methods, and the realization of input- and output transformations effectively decoupling relevant dynamic interactions. These transformations allow the usage of simple SISO-controllers for each control objective, and a method for controlling motion and fluid temperature concurrently, is proposed and experimentally verified.
TitelFluid Power, Hydraulics, Pneumatics, 12th International Fluid Power Conference
Antal sider12
ForlagDresdner Verein zur Förderung der Fluidtechnik e.V. Dresden
Publikationsdato22 jun. 2020
StatusUdgivet - 22 jun. 2020
Begivenhed12th International Fluid Power Conference - Dresden, Tyskland
Varighed: 12 okt. 202014 okt. 2020


Konference12th International Fluid Power Conference


Dyk ned i forskningsemnerne om 'Multi-objective control of a self-locking compact electro-hydraulic cylinder drive'. Sammen danner de et unikt fingeraftryk.