NN-induced Physical Information Dynamic Library for Transient Modeling of Large-Scale Wind Farm

Hongyi Wang, Pingyang Sun, Georgios Konstantinou, Zhe Chen

Publikation: Bidrag til tidsskriftKonferenceartikel i tidsskriftForskningpeer review

Abstract

The complexity of transient characteristics in large-scale wind farms (WF) hinders the application of machine learning algorithms. This paper proposes a neural network-based learning method to provide physical information cues for the learning framework of transient characteristics in large-scale WF induced by physical information. The complexity of the physical information repository is simplified through an iterative algorithm. The dynamic library obtained based on neural networks can induce the machine learning framework to rapidly learn the transient characteristics of large-scale WF. Moreover, there is no need for excessive mechanistic analysis and speculation regarding the transient behavior of WF. The effectiveness of the proposed method is verified in the simulation model of a WF.
OriginalsprogEngelsk
TidsskriftThe 10th International Conference on Automation, Robotics, and Applications (ICARA 2024)
Antal sider5
StatusAfsendt - 2025

Fingeraftryk

Dyk ned i forskningsemnerne om 'NN-induced Physical Information Dynamic Library for Transient Modeling of Large-Scale Wind Farm'. Sammen danner de et unikt fingeraftryk.

Citationsformater