Numerical Investigation of Radiative Heat Transfer in a Particulate Medium Using FTn Finite Volume Method

Behnam Moghadassian, Mohammad Jafari, Parinaz Hafezisefat, S. Mojtaba M. Hosseini, Alireza Rezaniakolaei

Publikation: Bidrag til tidsskriftKonferenceartikel i tidsskriftForskningpeer review

71 Downloads (Pure)

Abstract

Radiative heat transfer in participating medium finds applications in high temperature systems where the medium is not perfectly transparent. Examples are combustion chambers and layers of Earth’s atmosphere. Presence of tiny particles (ranging from 500 nanometers to 10 micrometers in diameter) in a medium strongly affects the radiative heat transfer. The governing equations for solving the heat transfer in the medium are discretized using FTn finite volume method. The major step in simulating the radiative heat transfer in a particulate medium is finding the scattering phase function. The original Mie theory (without any approximation) is used to calculate scattering phase functions. Non-orthogonal mesh is applied to discretize the non-orthogonal computational domain. The intensities at cell faces are found by relating them to nodal values through the high resolution CLAM scheme. Cases of scattering in media with dielectric particles and absorbing particles are considered. Also, the influences of the particle density on the dimensionless radiative heat flux and direction-integrated intensity are studied.
OriginalsprogEngelsk
TidsskriftEnergy Procedia
Vol/bind158
Sider (fra-til)5692-5698
Antal sider7
ISSN1876-6102
DOI
StatusUdgivet - feb. 2019
Begivenhed10th International Conference on Applied Energy - Hongkong, Kina
Varighed: 22 aug. 201825 aug. 2018
Konferencens nummer: 10
http://www.applied-energy.org/icae2018/

Konference

Konference10th International Conference on Applied Energy
Nummer10
Land/OmrådeKina
ByHongkong
Periode22/08/201825/08/2018
Internetadresse

Fingeraftryk

Dyk ned i forskningsemnerne om 'Numerical Investigation of Radiative Heat Transfer in a Particulate Medium Using FTn Finite Volume Method'. Sammen danner de et unikt fingeraftryk.

Citationsformater