On generating network traffic datasets with synthetic attacks for intrusion detection

Carlos Garcia Cordero, Emmanouil Vasilomanolakis, Aidmar Wainakh, Max Mühlhäuser, Simin Nadjm-Tehrani

Publikation: Bidrag til tidsskriftTidsskriftartikelpeer review

1 Citationer (Scopus)

Abstrakt

Most research in the field of network intrusion detection heavily relies on datasets. Datasets in this field, however, are scarce and difficult to reproduce. To compare, evaluate, and test related work, researchers usually need the same datasets or at least datasets with similar characteristics as the ones used in related work. In this work, we present concepts and the Intrusion Detection Dataset Toolkit (ID2T) to alleviate the problem of reproducing datasets with desired characteristics to enable an accurate replication of scientific results. Intrusion Detection Dataset Toolkit (ID2T) facilitates the creation of labeled datasets by injecting synthetic attacks into background traffic. The injected synthetic attacks created by ID2T blend with the background traffic by mimicking the background traffic's properties. This article has three core contributions. First, we present a comprehensive survey on intrusion detection datasets. In the survey, we propose a classification to group the negative qualities found in the datasets. Second, the architecture of ID2T is revised, improved, and expanded in comparison to previous work. The architectural changes enable ID2T to inject recent and advanced attacks, such as the EternalBlue exploit or a peer-to-peer botnet. ID2T's functionality provides a set of tests, known as TIDED, that helps identify potential defects in the background traffic into which attacks are injected. Third, we illustrate how ID2T is used in different use-case scenarios to replicate scientific results with the help of reproducible datasets. ID2T is open source software and is made available to the community to expand its arsenal of attacks and capabilities.

OriginalsprogEngelsk
Artikelnummer8
TidsskriftACM Transactions on Privacy and Security
Vol/bind24
Udgave nummer2
Antal sider39
ISSN2471-2566
DOI
StatusUdgivet - jan. 2021

Fingeraftryk

Dyk ned i forskningsemnerne om 'On generating network traffic datasets with synthetic attacks for intrusion detection'. Sammen danner de et unikt fingeraftryk.

Citationsformater