On local optima in learning bayesian networks

Jens Dalgaard, Tomas Kocka, Jose Pena

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskning

396 Downloads (Pure)

Abstract

This paper proposes and evaluates the k-greedy equivalence search algorithm (KES) for learning Bayesian networks (BNs) from complete data. The main characteristic of KES is that it allows a trade-off between greediness and randomness, thus exploring different good local optima. When greediness is set at maximum, KES corresponds to the greedy equivalence search algorithm (GES). When greediness is kept at minimum, we prove that under mild assumptions KES asymptotically returns any inclusion optimal BN with nonzero probability. Experimental results for both synthetic and real data are reported showing that KES often finds a better local optima than GES. Moreover, we use KES to experimentally confirm that the number of different local optima is often huge.
OriginalsprogEngelsk
TitelProceedings of the 19th Conference on Uncertainty in Artificial Intelligence
ForlagAcademic Press
Publikationsdato2003
Sider435-442
ISBN (Trykt)0127056645
StatusUdgivet - 2003
BegivenhedOn local optima in learning bayesian networks -
Varighed: 19 maj 2010 → …

Konference

KonferenceOn local optima in learning bayesian networks
Periode19/05/2010 → …

Bibliografisk note

ISSN ; -

Emneord

  • Bayesian networks
  • Machine learning
  • Data mining

Fingeraftryk

Dyk ned i forskningsemnerne om 'On local optima in learning bayesian networks'. Sammen danner de et unikt fingeraftryk.

Citationsformater