On Steane-enlargement of quantum codes from Cartesian product point sets

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstrakt

In this work, we study quantum error-correcting codes obtained by using Steane-enlargement. We apply this technique to certain codes defined from Cartesian products previously considered by Galindo et al. (IEEE Trans Inf Theory 64(4):2444–2459, 2018. https://doi.org/10.1109/TIT.2017.2755682). We give bounds on the dimension increase obtained via enlargement, and additionally give an algorithm to compute the true increase. A number of examples of codes are provided, and their parameters are compared to relevant codes in the literature, which shows that the parameters of the enlarged codes are advantageous. Furthermore, comparison with the Gilbert–Varshamov bound for stabilizer quantum codes shows that several of the enlarged codes match or exceed the parameters promised by the bound.
OriginalsprogEngelsk
TidsskriftQuantum Information Processing
Vol/bind19
Udgave nummer7
Antal sider15
ISSN1570-0755
StatusUdgivet - 22 maj 2020

Fingeraftryk Dyk ned i forskningsemnerne om 'On Steane-enlargement of quantum codes from Cartesian product point sets'. Sammen danner de et unikt fingeraftryk.

  • Citationsformater