Online Identification of Wind Farm Wide Frequency Admittance with Power Cables Using the Artificial Neural Network

Li Cheng*, Yang Wu, Xiongfei Wang, Minjie Chen, Yufei Li, Lars Nordstrom, Frans Dijkhuizen

*Kontaktforfatter

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

Abstract

In power-electronic-based power systems like wind farms, stability analysis requires knowledge of system impedance across a wide frequency range, from sub-harmonic frequencies to the Nyquist frequency. Although it is feasible to take the fundamental frequency measurement during power system operation, obtaining a wide-frequency impedance curve in real time is very challenging. This paper proposed an ANN-based approach to estimate wide-frequency system admittance of wind farms with power cables, through fundamental frequency measurements. Real-life uncertainties are considered, including shunt capacitor injection, filter inductance variance, cable aging, errors in voltage and current measurements, and the variance of other system parameters. The generalization ability of the ANN is validated on a new dataset with different uncertainty distributions, and the error sensitivity to the potential system parameter variance is evaluated. These results can be referenced in the data acquisition step in future neural-network-based applications.

OriginalsprogEngelsk
Titel2023 IEEE Energy Conversion Congress and Exposition, ECCE 2023
Antal sider6
ForlagIEEE
Publikationsdato2023
Sider1530-1535
Artikelnummer10362863
ISBN (Elektronisk)9798350316445
DOI
StatusUdgivet - 2023
Begivenhed2023 IEEE Energy Conversion Congress and Exposition, ECCE 2023 - Nashville, USA
Varighed: 29 okt. 20232 nov. 2023

Konference

Konference2023 IEEE Energy Conversion Congress and Exposition, ECCE 2023
Land/OmrådeUSA
ByNashville
Periode29/10/202302/11/2023
SponsorCOMSOL, DELTA, et al., Hitachi, John Deere, Oak Ridge National Laboratory
Navn2023 IEEE Energy Conversion Congress and Exposition, ECCE 2023

Bibliografisk note

Publisher Copyright:
© 2023 IEEE.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Online Identification of Wind Farm Wide Frequency Admittance with Power Cables Using the Artificial Neural Network'. Sammen danner de et unikt fingeraftryk.

Citationsformater