Optimal Infinite Runs in One-Clock Priced Timed Automata

Alexandre David, Daniel Ejsing-Duun, Lisa Fontani, Kim Guldstrand Larsen, Vasile Popescu, Jacob Haubach Smedegård

Publikation: Konferencebidrag uden forlag/tidsskriftPaper uden forlag/tidsskriftForskningpeer review

Abstrakt

We address the problem of finding an infinite run with the
optimal cost-time ratio in a one-clock priced timed automaton and pro-
vide an algorithmic solution. Through refinements of the quotient graph
obtained by strong time-abstracting bisimulation partitioning, we con-
struct a graph with time and costs as weights and prove that the min-
imum ratio properties remain unaltered, allowing algorithms for finite
weighted graphs to be applied. The resulting algorithm has an overall
time complexity of O((|Q| · (|T | + |Q|))6 ), |Q| being the number of lo-
cations and |T | the number of transitions of the one-clock priced timed
automaton.
OriginalsprogEngelsk
Publikationsdato2011
Antal sider9
StatusUdgivet - 2011
BegivenhedAnnual Doctoral Workshop on Mathematical and Engineering Methods in Computer Science - Lednice, Tjekkiet
Varighed: 14 okt. 201116 okt. 2011

Konference

KonferenceAnnual Doctoral Workshop on Mathematical and Engineering Methods in Computer Science
LandTjekkiet
ByLednice
Periode14/10/201116/10/2011

Fingeraftryk Dyk ned i forskningsemnerne om 'Optimal Infinite Runs in One-Clock Priced Timed Automata'. Sammen danner de et unikt fingeraftryk.

Citationsformater