Optimal Planning and Design of Low-Voltage Low-Power Solar DC Microgrids

Mashood Nasir, Saqib Iqbal, Hassan Abbas Khan

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

50 Citationer (Scopus)
37 Downloads (Pure)

Abstrakt

Low-power, low-voltage (up to 48V distribution voltage), solar photovoltaic (PV) based DC microgrids are becoming very popular in non-electrified villages of developing countries due to limited power requirements of rural occupants. While these systems generally have a low upfront cost compared to utility grid alternatives, the optimal selection sizing of various components such as solar panels, batteries and distribution conductors based upon the local conditions (structure of village, incident irradiance and temperature) is a key factor for minimizing the system cost and enhance its utilization. and in turn maximizing the Rerturn on Investment. Therefore, we present a framework for optimal sizing of LP DC microgrids for minimum upfront cost based on a 365-day regional study. The analysis is based on a) specific irradiance and temperature profiles, b) constraints in storage and distributions, c) distribution loss analysis and d) optimum storage, conductor and PV panel requirements for 24-hr operation. We further discuss merits of tailoring distribution architecture for maximizing the system utility in the planning phase of future deployments.
OriginalsprogEngelsk
TidsskriftIEEE Transactions on Power Systems
Vol/bind33
Udgave nummer3
Sider (fra-til)2919-2928
Antal sider10
ISSN0885-8950
DOI
StatusUdgivet - 1 maj 2018
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Optimal Planning and Design of Low-Voltage Low-Power Solar DC Microgrids'. Sammen danner de et unikt fingeraftryk.

Citationsformater