Optimal Voltage Regulator for Inverter Interfaced Distributed Generation Units Part І: Control System

Mohsen Eskandari, Li Li, Mohammad Hassan Moradi, Pierluigi Siano, Frede Blaabjerg

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

25 Citationer (Scopus)
58 Downloads (Pure)

Abstract

The stable operation of conventional power systems greatly depends on coherent impedances of the bulk power networks' elements. However, penetration of inverter interfaced distributed generation (IIDG) units put the stability of modern power systems into a risk due the vague and arbitrary output impedance of IIDG units. Besides, the impedance specification of IIDGs can only be established by means of a virtual impedance loop, which needs extra control efforts also imposes voltage drops. Especially, the virtual impedance depends on the output current and cannot be thus freely adjusted. To this end, an optimal voltage regulator (OVR) is proposed for controlling IIDG units to achieve a free/wide range of impedance shaping. The OVR facilitates the optimal impedance shaping based on the control requirement and grid's impedance characteristics, which makes the IIDG units consistent with the power network thus contributing to stabilizing modern power systems. The OVR's control system is based on the state feedback control and the impedance shaping is achieved through an appropriate feedback gain adjustment process. Simulation results prove the effectiveness of the method to achieve the desired impedance shaping.

OriginalsprogEngelsk
Artikelnummer9019893
TidsskriftI E E E Transactions on Sustainable Energy
Vol/bind11
Udgave nummer4
Sider (fra-til)2813-2824
Antal sider12
ISSN1949-3029
DOI
StatusUdgivet - okt. 2020

Fingeraftryk

Dyk ned i forskningsemnerne om 'Optimal Voltage Regulator for Inverter Interfaced Distributed Generation Units Part І: Control System'. Sammen danner de et unikt fingeraftryk.

Citationsformater