PAC-Bayesian Error Bound, via Rényi Divergence, for a Class of Linear Time-Invariant State-Space Models

Deividas Eringis, John-Josef Leth, Zheng-Hua Tan, Rafal Wisniewski, Mihaly Petreczky

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

5 Downloads (Pure)

Abstract

In this paper we derive a PAC-Bayesian error bound for a class of stochastic dynamical systems with inputs, namely, for linear time-invariant stochastic state-space models (stochastic LTI systems for short). This class of systems is widely used in control engineering and econometrics, in particular, they represent a special case of recurrent neural networks. In this paper we 1) formalize the learning problem for stochastic LTI systems with inputs, 2) derive a PAC-Bayesian error bound for such systems, and 3) discuss various consequences of this error bound.
OriginalsprogEngelsk
TitelProceedings of the 41st International Conference on Machine Learning
Antal sider28
ForlagML Research Press
Publikationsdato2024
StatusUdgivet - 2024
Begivenhed41st International Conference on Machine Learning - Vienna, Østrig
Varighed: 21 jul. 202427 jul. 2024
Konferencens nummer: 41
https://icml.cc/Conferences/2024

Konference

Konference41st International Conference on Machine Learning
Nummer41
Land/OmrådeØstrig
ByVienna
Periode21/07/202427/07/2024
Internetadresse
NavnThe Proceedings of Machine Learning Research
Vol/bind235
ISSN2640-3498

Fingeraftryk

Dyk ned i forskningsemnerne om 'PAC-Bayesian Error Bound, via Rényi Divergence, for a Class of Linear Time-Invariant State-Space Models'. Sammen danner de et unikt fingeraftryk.

Citationsformater