TY - JOUR
T1 - Pan-alimentary assessment of motility, luminal content, and structures: an MRI-based framework
AU - Bertoli, Davide
AU - Mark, Esben B.
AU - Liao, Donghua
AU - Brock, Christina
AU - Brock, Birgitte
AU - Krag Knop, Filip
AU - Krogh, Klaus
AU - Frøkjær, Jens Brøndum
AU - Drewes, Asbjørn
PY - 2023
Y1 - 2023
N2 - Background: Gastrointestinal symptoms originating from different segments overlap and complicate diagnosis and treatment. In this study, we aimed to develop and test a pan-alimentary framework for the evaluation of gastrointestinal (GI) motility and different static endpoints based on magnetic resonance imaging (MRI) without contrast agents or bowel preparation.Methods: Twenty healthy volunteers (55.6 ± 10.9 years, BMI 30.8 ± 9.2 kg/m2) underwent baseline and post-meal MRI scans at multiple time points. From the scans, the following were obtained: Gastric segmental volumes and motility, emptying half time (T50), small bowel volume and motility, colonic segmental volumes, and fecal water content. Questionnaires to assess GI symptoms were collected between and after MRI scans.Key results: We observed an increase in stomach and small bowel volume immediately after meal intake from baseline values (p<.001 for the stomach and p=.05 for the small bowel). The volume increase of the stomach primarily involved the fundus (p<.001) in the earliest phase of digestion with a T50 of 92.1 ± 35.3 min. The intake of the meal immediately elicited a motility increase in the small bowel (p<.001). No differences in colonic fecal water content between baseline and 105 min were observed.Conclusion & inferences: We developed a framework for a pan-alimentary assessment of GI endpoints and observed how different dynamic and static physiological endpoints responded to meal intake. All endpoints aligned with the current literature for individual gut segments, showing that a comprehensive model may unravel complex and incoherent gastrointestinal symptoms in patients.
AB - Background: Gastrointestinal symptoms originating from different segments overlap and complicate diagnosis and treatment. In this study, we aimed to develop and test a pan-alimentary framework for the evaluation of gastrointestinal (GI) motility and different static endpoints based on magnetic resonance imaging (MRI) without contrast agents or bowel preparation.Methods: Twenty healthy volunteers (55.6 ± 10.9 years, BMI 30.8 ± 9.2 kg/m2) underwent baseline and post-meal MRI scans at multiple time points. From the scans, the following were obtained: Gastric segmental volumes and motility, emptying half time (T50), small bowel volume and motility, colonic segmental volumes, and fecal water content. Questionnaires to assess GI symptoms were collected between and after MRI scans.Key results: We observed an increase in stomach and small bowel volume immediately after meal intake from baseline values (p<.001 for the stomach and p=.05 for the small bowel). The volume increase of the stomach primarily involved the fundus (p<.001) in the earliest phase of digestion with a T50 of 92.1 ± 35.3 min. The intake of the meal immediately elicited a motility increase in the small bowel (p<.001). No differences in colonic fecal water content between baseline and 105 min were observed.Conclusion & inferences: We developed a framework for a pan-alimentary assessment of GI endpoints and observed how different dynamic and static physiological endpoints responded to meal intake. All endpoints aligned with the current literature for individual gut segments, showing that a comprehensive model may unravel complex and incoherent gastrointestinal symptoms in patients.
KW - Abdomen
KW - Gastrointestinal Motility
KW - Gastrointestinal disease
KW - Magnetic Resonance Imaging
KW - Nausea
U2 - 10.1080/00365521.2023.2233036
DO - 10.1080/00365521.2023.2233036
M3 - Journal article
SN - 0036-5521
VL - 58
SP - 1378
EP - 1390
JO - Scandinavian Journal of Gastroenterology
JF - Scandinavian Journal of Gastroenterology
IS - 12
ER -