Parametric Primitives for Hand Gesture Recognition

Sanmohan Baby, Volker Krüger

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstrakt

Imitation learning is considered to be an effective way of teaching humanoid robots and action recognition is the key step to imitation learning. In this paper  an online algorithm to recognize parametric actions with object context is presented. Objects are key instruments in understanding an action when there is uncertainty. Ambiguities arising in similar actions can be resolved with object context. We classify actions according to the changes they make to the object space. Actions that produce the same state change in the object movement space are classified to belong to the same class. This allow us to define several classes of actions where members of each class are connected with a semantic interpretation.
OriginalsprogEngelsk
TidsskriftWorld Academy of Science, Engineering and Technology. Proceedings
Vol/bind58
Sider (fra-til)97-101
Antal sider4
ISSN2070-3740
StatusUdgivet - 2009
BegivenhedInternational Conference on Intelligent Control, Robotics, and Automation - Venice, Italien
Varighed: 28 okt. 200930 okt. 2009

Konference

KonferenceInternational Conference on Intelligent Control, Robotics, and Automation
Land/OmrådeItalien
ByVenice
Periode28/10/200930/10/2009

Bibliografisk note

Værtspublikationsredaktører: Ardil Cemal
Serie: World Academy of Science, Engineering and Technology, World Academy of Science, Engineering and Technology, 20703724, 20703724

Fingeraftryk

Dyk ned i forskningsemnerne om 'Parametric Primitives for Hand Gesture Recognition'. Sammen danner de et unikt fingeraftryk.

Citationsformater