Performance Evaluation of Low/Zero Voltage Ride-Through Operations for Single-Stage Single-Phase Photovoltaic Inverters

Zhen Zhang, Yongheng Yang, Frede Blaabjerg, Ruiqing Ma

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

4 Citationer (Scopus)

Abstract

With the fast development of distributed power generations, stability and security have attracted extensive attention in the recent years. As a representative of clean energies, Photovoltaic (PV) systems have been installed extensively worldwide. This drives grid-connected requirements to be continuously updated. In current active grid requirements/codes, PV systems should be more intelligent in the considerations of the grid stability, reliability and fault protection. In this paper, two control strategies (i.e., the single-phase PQ control and power phase-angle control) are evaluated for grid-connected single-stage single-phase PV systems in the case of Low/Zero Voltage Ride-Through (LVRT/ZVRT) operation. A comparative analysis of the two LVRT/ZVRT control methods for PV systems is presented. Simulation results are presented, which verifies that the LVRT/ZVRT methods can help the PV systems to temporarily ride-through the grid low-/zero-voltage faults. The power phase-angle control method has a better dynamic response.
OriginalsprogEngelsk
TitelProceedings of the 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia)
Antal sider6
ForlagIEEE Press
Publikationsdatojun. 2017
Sider99-104
ISBN (Trykt)978-1-5090-5157-1
DOI
StatusUdgivet - jun. 2017
Begivenhed2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia) - Kaohsiung, Taiwan
Varighed: 3 jun. 20177 jun. 2017

Konference

Konference2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia)
Land/OmrådeTaiwan
ByKaohsiung
Periode03/06/201707/06/2017

Fingeraftryk

Dyk ned i forskningsemnerne om 'Performance Evaluation of Low/Zero Voltage Ride-Through Operations for Single-Stage Single-Phase Photovoltaic Inverters'. Sammen danner de et unikt fingeraftryk.

Citationsformater