Projekter pr. år
Abstrakt
The transition of conventional power system onto power electronics dominated grid (PEDG) has lead to amplified complexity in system-level control schemes to maintain reliability and operational stability. Considering the abundance of data in PEDG, machine learning (ML) schemes have emerged as a promising alternative. In this article, a physical guided data-driven approach using pattern recognition neural network (PRNN) is employed with semi-supervised learning. To distinguish between the faults and cyber-attacks without relying historical data scenarios. Finally, the results of proposed approach are discussed by utilizing ML tools.
Originalsprog | Engelsk |
---|---|
Titel | Proceedings of the 2021 6th IEEE Workshop on the Electronic Grid (eGRID) |
Antal sider | 6 |
Forlag | IEEE Press |
Publikationsdato | nov. 2021 |
Sider | 1-6 |
Artikelnummer | 9662148 |
ISBN (Trykt) | 978-1-6654-4980-9 |
ISBN (Elektronisk) | 978-1-6654-4979-3 |
DOI | |
Status | Udgivet - nov. 2021 |
Begivenhed | 2021 6th IEEE Workshop on the Electronic Grid (eGRID) - New Orleans, LA, USA Varighed: 8 nov. 2021 → 10 nov. 2021 |
Konference
Konference | 2021 6th IEEE Workshop on the Electronic Grid (eGRID) |
---|---|
Land/Område | USA |
By | New Orleans, LA |
Periode | 08/11/2021 → 10/11/2021 |
Fingeraftryk
Dyk ned i forskningsemnerne om 'Physics Guided Data-Driven Characterization of Anomalies in Power Electronic Systems'. Sammen danner de et unikt fingeraftryk.Projekter
- 1 Igangværende
-
REPEPS: REliable Power Electronic based Power System
Blaabjerg, F., Iannuzzo, F., Davari, P., Wang, H., Wang, X. & Yang, Y.
01/08/2017 → 01/12/2023
Projekter: Projekt › Forskning