Power diagrams and interaction processes for unions of discs

Jesper Møller, Katarina Helisova

Publikation: Bog/antologi/afhandling/rapportRapportForskning

452 Downloads (Pure)

Abstract

We study a flexible class of finite disc process models with interaction between the discs. We let U denote the random set given by the union of discs, and use for the disc process an exponential family density with the canonical sufficient statistic only depending on geometric properties of U such as the area, perimeter, Euler-Poincar´e characteristic, and number of holes. This includes the quarmass-interaction process and the continuum random cluster model as special cases. Viewing our model as a connected component Markov point process, and thereby establish local and spatial Markov properties, becomes useful for handling the problem of edge effects when only U is observed within a bounded observation window. The power tessellation and its dual graph become major tools when establishing inclusion-exclusion formulae, formulae for computing geometric characteristics of U, and stability properties of the underlying disc process density. Algorithms for constructing the power tessellation of U and for simulating the disc process are discussed, and the software is made public available.

OriginalsprogEngelsk
ForlagDepartment of Mathematical Sciences, Aalborg University
Antal sider43
StatusUdgivet - 2007
NavnResearch Report Series
NummerR-2007-15
ISSN1399-2503

Fingeraftryk

Dyk ned i forskningsemnerne om 'Power diagrams and interaction processes for unions of discs'. Sammen danner de et unikt fingeraftryk.

Citationsformater