Projekter pr. år
Abstract
In this work, we attempt to predict the composition-structure relationship in alkali aluminoborate glasses by using a recent statistical mechanics-based model that has previously been applied to predict the structure of binary modifier-former and ternary modifier-former-former oxide glasses. However, the structure of glasses with network intermediates such as Al2O3 has not yet been predicted with this approach. We thus extend the statistical mechanics-based model to predict composition-structure relations in Na2O-Al2O3-B2O3 glasses with different structural assumptions regarding the role of high-coordinated aluminum species. This ternary glass system was chosen since its structure has been thoroughly investigated in literature and is thus the best system for training the statistical mechanics-based model. To test and validate the model parameters established in the Na2O-Al2O3-B2O3 glass system, we accurately predict the structural speciation in Cs2O-Al2O3-B2O3 and Li2O-Al2O3-B2O3 glasses with the same parameters for Al-B interactions.
Originalsprog | Engelsk |
---|---|
Artikelnummer | 120099 |
Tidsskrift | Journal of Non-Crystalline Solids |
Vol/bind | 544 |
Antal sider | 8 |
ISSN | 0022-3093 |
DOI | |
Status | Udgivet - 15 sep. 2020 |
Fingeraftryk
Dyk ned i forskningsemnerne om 'Predicting Cation Interactions in Alkali Aluminoborate Glasses using Statistical Mechanics'. Sammen danner de et unikt fingeraftryk.Projekter
- 1 Afsluttet
-
Tailoring the Structure of Disordered Solids using Statistical Mechanics
Smedskjær, M. M. (PI (principal investigator)) & Bødker, M. S. (Projektdeltager)
01/09/2017 → 31/08/2021
Projekter: Projekt › Forskning